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Abstract. This article presents a new learning methodology based on an hy-
brid algorithm for interval type-2 non-singleton type-2 fuzzy logic systems 
(FLS) parameters estimation. Using input-output data pairs during the for-
ward pass of the training process, the interval type-2 FLS output is calculated 
and the consequent parameters are estimated by orthogonal least-square 
(OLS) method. In the backward pass, the error propagates backward, and the 
antecedent parameters are estimated by back-propagation (BP) method. The 
proposed hybrid methodology was used to construct an interval type-2 fuzzy 
model capable of approximate the behavior of the steel strip temperature as it 
is being rolled in an industrial Hot Strip Mill (HSM) and used to predict the 
transfer bar surface temperature at finishing Scale Breaker (SB) entry zone. 
Comparative results show the advantage of the hybrid learning method (OLS-
BP) over that with only BP.  

1   Introduction 

Interval type-2 fuzzy logic systems (FLS) constitute an emerging technology. In [1] 
the interval type-2 FLS learning methods are one-pass and back-propagation (BP) 
methods. One-pass method generates a set of IF-THEN rules by using the given 
training data once, and combines the rules to construct the final FLS. In back-
propagation, none of antecedent and consequent parameters of the interval type-2 
FLS are fixed at starting of training process; they are tuned using BP method. Re-
cursive least-square (RLS) is not presented as interval type-2 FLS learning method. 

One-pass and Back-Propagation (BP) are presented as type-2 FLS learning meth-
ods in [1]. One-pass method generates a set of IF-THEN rules by using the given 
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training data once, and combines the rules to construct the final fuzzy logic systems 
(FLS). None of the antecedent and consequent parameters of interval type-2 FLS are 
fixed at the start of the training process in BP; instead they are tuned by using the 
steepest descent method. To the best knowledge of the authors, the hybrid learning 
method has not been reported in type-2 FLS. 

Only the BP learning method for type-2 FLS has been proposed in the literature, 
therefore one of the main contributions of this work is to implement a new hybrid 
learning algorithm for interval type-2 FLS, in view of the success of the hybrid 
learning method in type-1 FLS [2]. In [3, 4] it is shown that hybrid algorithms im-
prove convergence over the BP method. In the forward pass, FLS output is calcu-
lated and the consequent parameters are estimated by either RLS [2] or REFIL [5] 
methods. In the backward pass, the error propagates backward, and the antecedent 
parameters are estimated by the BP method. In [3, 4] one of the proposed hybrid 
algorithms is based on RLS, since it is a benchmark algorithm for parameter estima-
tion or systems identification. In addition, the parameter estimation method called 
REFIL, has also been used since it improves performance over RLS [5]. Conver-
gence of the proposed methods has been practically tested; however mathematical 
proof is still to be done in general for hybrid learning algorithms. 

This papers proposes a hybrid learning algorithm for interval type-2 FLS for an-
tecedent and consequent parameter estimation during training process using input-
output data pairs. In the forward pass, FLS output is calculated and the consequent 
parameters are estimated using REDCO [5] a recursive orthogonal least-square 
(OLS) learning method. In the backward pass, the error propagates backward, and 
the antecedent parameters are estimated by the BP method.  

A second but very important purpose of this paper is to propose an application 
methodology based on interval type-2 FLS and the hybrid learning method men-
tioned above for hot strip mill (HSM) temperature prediction. Interval type-2 FLS is 
suitable for industrial modelling and control applications. The scale breaker (SB) 
entry mean and surface temperatures are used by the finishing mill set-up (FSU) 
model [6] to preset the finishing mill (FM) stand screws and to calculate the transfer 
bar thread speed, both required to achieve the FM exit target head gage the target 
head temperature. 

In temperature prediction, the inputs of the fuzzy type-2 models, used to predict 
the SB entry temperatures, are the surface temperature of the transfer bar at the 
roughing mill (RM) exit ( )1x  and the time required by the transfer bar head to reach 

the SB entry zone ( )2x . Currently, the surface temperature is measured using a py-

rometer located at the RM exit side. Scale grows at the transfer bar surface produc-
ing a noisy temperature measurement. The measurement is also affected by envi-
ronment water steam as well as pyrometer location, calibration, resolution and 
repeatability. The head end transfer bar travelling time is estimated by the FSU 
model using FM estimated thread speed. Such estimation has an error associated 
with the inherent FSU model uncertainty. Although temperature prediction ( )y  is a 

critical issue in a HSM the problem has not been fully addressed by fuzzy logic 
control systems [1, 3, 4]. 
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The proposed algorithm is evaluated using an interval type-2 non-singleton type-
2 FLS inference system (type-2 NSFLS-2) which predicts the transfer bar surface 
temperature at the SB entry zone. 

This work is organized as follows. Section 2 gives the hybrid learning problem 
formulation for interval type-2 fuzzy logic systems. Section 3 presents solution as an 
adaptive training algorithm. Section 4 shows an interval type-2 NSFLS-2 application 
for HSM temperature prediction using the hybrid learning method. Conclusions are 
stated in Section 5.  

2   Problem Formulation 

Most of the industrial processes are highly uncertain, non-linear, time varying and 
non-stationary [3, 4, 7], having very complex mathematical representations. Interval 
type-2 FLS take easily the random and systematic components of type A or B stan-
dard uncertainty [8] of industrial measurements. The non-linearities are handled by 
FLS as identifiers and universal approximators of nonlinear dynamic systems [9, 10, 
11]. The stationary noise and non-stationary additive noise are handled in natural 
way by interval type-2 FLS [1]. Such characteristics make interval type-2 FLS a 
very powerful inference system to model and control industrial processes 

In [1] only one-pass and back-propagation (BP) algorithms are presented as inter-
val type-2 FLS learning methods. Three basic problems for which it is not possible 
to use RLS on interval type-2 FLS are explained: 

1. The starting point for the RLS method to designing an interval singleton 
FLS is a type-1 Fuzzy Basis Function (FBF) expansion. No such FBF ex-
pansion exists for a general type-2 non-singleton type-2 FLS. Since an in-
terval type-2 FLS output ( )xy  can be expressed as:  

( ) ( ) ( )[ ]xpyxpyx r
T
rl

T
ly +=

2
1

 . (1) 

  with M ordered rules, it looks like a least-squares method can be used to 

tune the parameters in T
ly  (matrix transpose of M left-points i

ly  of conse-

quent centroids) and T
ry  (matrix transpose of M right-points i

ry  of conse-

quent centroids). Unfortunately, this is incorrect. The problem is that in or-

der to know the FBF expansions ( )xp l  and ( )xp r , each i
ly  and i

ry  (the M 

left-points and right-points of interval consequent centroids) must be known 
first. Because at initial conditions of the calculations there are no numerical 
values for those elements, it is impossible to do this; hence the FBF expan-
sions ( )xp l  and ( )xp r  cannot be calculated. This situation does not occur 

for type-1 FBF expansion. 
2. Although ly  and ry  (the end-points of interval type-2 FLS center-of-sets 

type-reduced set COSY ) can be expressed as an interval [ ]ii ff ,  in terms of 
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their lower ( if ) and upper (
if ) M firing sets, and the corresponding M 

consequents left and right-points, i
ly and i

ry , as: 

( )M
ll

MLL
ll yyffffyy ,...,,,...,,,..., 111 +=  . (2) 

( )M
rr

MRR
rr yyffffyy ,...,,,...,,,..., 111 +=  . (3) 

  where L and R are not known in advance [1]. L is the index to the rule-
ordered FBF expansions at which ly  is a minimum, and R is the index at 

which ry  is a maximum. Once the points L and R are known, (1) is very 

useful to organize and describe the calculations of ly  and ry . 

3. The next problem has to do with the re-ordering of i
ly  and i

ry  [1]. The 

type-1 FBF expansions have always had an inherent rule ordering associ-

ated with them; i.e. rules MRRR ,...,, 21  always established the first, sec-
ond,…, and Mth  FBF. This order is lost and it is necessary to restore it for 
later use. 

3 Problem Solution 

3.1 Type-2 FLS 

A type-2 fuzzy set, denoted by A~ , is characterized by a type-2 membership function 
( )uxA ,~µ , where Xx∈  and [ ]1,0⊆∈ xJu  and ( ) .1,0 ~ ≤≤ uxAµ : 

( ) ( )( ) [ ]{ }1,0,|,,,~ ~ ⊆∈∀∈∀= xA JuXxuxuxA µ  . (4) 

This means that at a specific value of x , say x′ , there is no longer a single value 
as for the type-1 membership function ( )u ′ ; instead the type-2 membership function 

takes on a set of values named the primary membership of x′ , [ ]1,0⊆∈ xJu . It is 

possible to assign an amplitude distribution to all of those points. This amplitude is 
named a secondary grade of general type-2 fuzzy set. When the values of secondary 
grade are the same and equal to 1, there is the case of an interval type-2 membership 
function [1, 12, 13, 14, 15].  

3.2 Using Recursive OLS Learning Algorithm in Interval Type-2 FLS  

Table 1 shows one pass learning algorithm activities BP method.  
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Table 1.  One  Pass In Learning Procedure for Interval Type-2 FLS 

 Forward 
Pass 

Backward 
Pass 

Antecedent 
Parameters 

Fixed BP 

Consequent 
Parameters 

Fixed BP 

 
The proposed hybrid algorithm uses recursive OLS during forward pass for con-

sequent parameters tuning and BP during backward pass for antecedent parameters 
tuning, as shown in Table 2. 

 
Table 2. Two Passes In Hybrid Learning Procedure for Interval Type-2 FLS 

 Forward 
Pass 

Backward 
Pass 

Antecedent 
Parameters 

Fixed BP 

Consequent 
Parameters 

OLS Fixed 

3.3 Adaptive OLS-BP Hybrid Learning Algorithm 

The hybrid training method is based on the initial conditions of consequent parame-

ters: i
ly  and i

ry . It presented as in [1]: Given N input-output training data pairs, the 

hybrid training algorithm for E training epochs, should minimize the error function  

( ) ( )( ) ( )[ ]222
1 tt

s
t yfe −= x  . (5) 

4 Application to Transfer Bar Surface Temperature Prediction  

4.1 Hot Strip Mill 

Because of the complexities and uncertainties involved in rolling operations, the 
development of mathematical theories has been largely restricted to two-
dimensional models applicable to heat losing in flat rolling operations. 
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Fig. 1, shows a simplified diagram of a HSM, from the initial point of the process 
at the reheat furnace entry to its end at the coilers. 

Besides the mechanical, electrical and electronic equipment, a big potential for 
ensuring good quality lies in the automation systems and the used control tech-
niques. The most critical process in the HSM occurs in the FM. There are several 
mathematical model based systems for setting up the FM. There is a model-based 
set-up system [6] that calculates the FM working references needed to obtain gauge, 
width and temperature at the FM exit stands. It takes as inputs: FM exit target gage, 
target width and target temperature, steel grade, hardness ratio from slab chemistry, 
load distribution, gauge offset, temperature offset, roll diameters, load distribution, 
transfer bar gauge, transfer bar width and transfer bar temperature entry. 

 
Horizontal

Scale
Breaker

Finishing
Scale

Breaker

Reheat
Furnace

Holding
Table

Transfer

Roughing
Mill

Crop
Shear

Finishing
Mill

X-Ray
Gage

Run-out
Cooling

Downcoilers

 
Fig. 1. Typical hot strip mill 

The errors in the gauge of the transfer bar are absorbed in the first two FM stands 
and therefore have a little effect on the target exit gauge. It is very important for the 
model to know the FM entry temperature accurately. A temperature error will 
propagate through the entire FM.  

4.2 Interval Type-2 Fuzzy Logic System Design 

The architecture of the FLS was established in such way that parameters are con-
tinuously optimized. The number of rule-antecedents was fixed to two; one for the 
RM exit surface temperature and the other for transfer bar head traveling time. Each 
antecedent-input space was divided in five fuzzy sets, fixing the number of rules to 
twenty five. Gaussian primary membership functions with uncertain means were 
chosen for both, the antecedents and consequents. Each of the rules of the interval 
type-2 NSFLS-2 is characterized by six antecedent membership function parameters 
and two consequent parameters. Each input value has two standard deviation pa-
rameters: given ten parameters per rule. 

The resulting interval type-2 FLS uses type-2 non-singleton fuzzification, maxi-
mum t-conorm, product t-norm, product implication and center-of-sets type-
reduction. 
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4.3 Noisy Input-Output Training Data Pairs 

From an industrial HSM, noisy input-output pairs of three different coil types were 
collected and used as training and checking data. The inputs were the noisy meas-
ured RM exit surface temperature and the measured RM exit to SB entry transfer bar 
traveling time. The output was the noisy measured SB entry surface temperature. 

4.4 Input Membership Function 

The primary membership functions for each input of the interval type-2 NSFLS-2 
was: 

( )






















 −
−=

2'

2
1exp

k
k

X

kk
kX

xx
x

σ
µ  . (6) 

where: =k 1,2 (the number of type-2 non-singleton inputs), ( )kX x
k

µ  is centered at 

'
kk xx =  and 

kXσ  is the standard deviation whose values varies over an interval of 

values [ ]21 , kk σσ . The standard deviation of the RM exit surface temperature meas-

urement,
1Xσ , initially varies over [11.0, 14.0] Co  interval, whereas the standard 

deviation head end traveling time measurement, 
2Xσ , initially varies over [1.41, 

3.41] s interval. The uncertainty of the input data was modeled as non-stationary 
additive noise using type-2 fuzzy sets. 

4.5 Antecedent Membership Functions 

The primary membership function for each antecedent was a Gaussian with uncer-
tain means as: 

( )






















 −
−=

2

2
1exp

i
k

i
kk

k
i
k

mx
x

σ
µ  . (7) 

where [ ]i
k

i
k

i
k mmm 21,∈  is the uncertain mean, i

kσ  is the standard deviation, =k 1,2 

(the number of antecedents) and =i 1,2,..25 (the number of M rules). The means of 
the antecedent fuzzy sets were uniformly distributed over the entire input space. 

11m  and 12m  are the upper and lower values of the uncertain mean, and 1σ  is stan-

dard deviation of input ( )1x . 22m  and 22m  are the upper and lower values of the 

uncertain mean and 2σ is standard deviation of input ( )2x . 
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4.6 Fuzzy Rule Base 

The type-2 fuzzy rule base consists of a set of IF-THEN rules that represents the 
model of the system. The interval non-singleton type-2 FLS have two inputs 

2211 ,, XxandXx ∈∈  and one output Yy∈ , which have a corresponding rule base 

size of M = 25 rules of the form: 

,~~: 2211
iii FisxandFisxIFR iGisyTHEN ~  . (8) 

where =i  1,2,…25, iF1
~ is the ( )1x  input type-2 fuzzy set, iF2

~ is ( )2x  input type-2 

fuzzy set and iG~ is the consequent type-2 fuzzy set. These rules represent a fuzzy 
relation between the input space 21 XX ×  and the output space Y , and it is com-

plete, consistent and continuous [16].  

4.7 Consequent Membership Functions 

The primary membership function for each consequent is a Gaussian with uncertain 
means, as defined in (7). Because the center-of-sets type-reducer replaces each con-

sequent set iG~ by its centroid, then i
ly  and i

ry  are the consequent parameters. 

Because only the input-output data training pairs ( ) ( )( )11 : yx , ( ) ( )( )22 : yx ,…, 
( ) ( )( )NN yx :  are available and there is no data information about the consequents, 

the initial values for the centroid parameters i
ly  and i

ry  may be determined accord-

ing to the linguistic rules from human experts or be chosen arbitrarily in the output 

space [16]. In this work the initial values of parameters i
ly  and i

ry  are such that the 

corresponding membership functions uniformly cover the output space.  

4.8 Results 

An interval type-2 NSFLS-2 system was used to predict the transfer temperature. 
For each of the two methods, BP and hybrid OLS-BP, we ran fifteen epoch compu-
tations; using eighty-seven input-output training data pairs, 250 parameters were 
tuned. The performance evaluation for the learning methods was based on the 
benchmarking root mean-squared error (RMSE) criteria [1]: 

( ) ( ) ( )( )[ ] 2

1 *22
1* ∑ = −−= n

k
k

ss fkY
n

RMSE x  . (9) 

where ( )kY  is the output training data from the model using ten check data  pairs, 

( )*2sRMSE  stands for ( )BPRMSEs2 , and for ( )BPOLSRMSEs −2 , and were ob-

tained when applied BP and hybrid OLS-BP learning methods to an interval type-2 
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NSFLS-2. Fig. 2, shows RMSE of the two used interval type-2 NSFLS-2 with fif-
teen epochs’ computations for the case of type A coils. It can be appreciated that 
after four epochs, the hybrid OLS-BP has better performance than BP method. 

5 Conclusion 

In this paper we have developed an orthogonal-BP hybrid algorithm to train an in-
terval type-2 NSFLS-2 and used to predict HSM transfer bar temperature. The inter-
val type-2 NSFLS-2 antecedent membership functions and consequent centroids 
successfully absorbed the uncertainty introduced by the training noisy data. The 
uncertainty of the input data measurements was modeled as stationary additive noise 
using type-2 fuzzy sets. The selected initial values of the antecedent and consequent 
parameters can affect the results of the interval type-2 FLS predictions. BP and 
OLS-BP methods were tested and parameters estimation has been demonstrated. 
There is a substantial improvement in performance and stability of the hybrid 
method over the only BP method. The hybrid OLS-BP achieves the better RMSE 
performance as can be seen in the experimental results. It has been shown that the 
proposed methodology can be applied in modeling and control of the steel coil tem-
perature. It has also been envisaged its application in gage, width and flatness pre-
diction.  
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